Grain boundary strengthening — (or Hall Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries impede dislocation movement and that the number of dislocations within a … Wikipedia
Intergranular fracture — An intergranular fracture is a fracture that follows the grains of the material. If the material has multiple lattice organizations, when one lattice ends and another begins, the fracture changes direction to follow the new grain. This results in … Wikipedia
Segregation in materials — refers to the enrichment of a material constituent at a free surface or an internal interface of a material. In a polycrystalline solid, a segregation site can be a dislocation, grain boundary, stacking fault, or an interface with a precipitate… … Wikipedia
Crystallite — Galvanized surface with visible crystallites of zinc. Crystallites in the steel under the coating are microscopic. Crystallites are small, often microscopic crystals that, held together through highly defective boundaries, constitute a… … Wikipedia
Ceramic materials — Ceramic Si3N4 bearing parts Ceramic materials are inorganic, non metallic materials and things made from them. They may be crystalline or partly crystalline. They are formed by the action of heat and subsequent cooling.[1] Clay was one of the… … Wikipedia
Strengthening mechanisms of materials — Methods have been devised to modify the yield strength, ductility, and toughness of both crystalline and amorphous materials. These strengthening mechanisms give engineers the ability to tailor the mechanical properties of materials to suit a… … Wikipedia
Ceramic engineering — Simulation of the outside of the Space Shuttle as it heats up to over 1,500 °C (2,730 °F) during re entry into the Earth s atmosphere Ceramic engineering is the science and technology of creating objects from inorganic, non metallic… … Wikipedia
Liquid metal embrittlement — is a phenomenon of practical importance, where certain ductile metals experience drastic loss in tensile ductility or undergo brittle fracture when tested in the presence of specific liquid metals. Generally, a tensile stress, either externally… … Wikipedia
Creep (deformation) — For other uses, see Creep (disambiguation). v · d · e Materials failure modes Buckling … Wikipedia
Strength of materials — Internal force lines are denser near the hole, a common stress concentration In materials science, the strength of a material is its ability to withstand an applied stress without failure. The applied stress may be tensile, compressive, or shear … Wikipedia
Dislocation — For the syntactic operation, see Dislocation (syntax). For the medical term, see Joint dislocation. In materials science, a dislocation is a crystallographic defect, or irregularity, within a crystal structure. The presence of dislocations… … Wikipedia